
Metric problems in sub-Riemannian geometry
Gromov’s dimension approach to the Hölder equivalence problem
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Heis denotes Heisenberg group, the group of matrices of the form

1 x z
0 1 y
0 0 1

 with

real entries. Dilatations δt(x , y , z) = (tx , ty , t2z) are group automorphisms. Its Lie
algebra has basis

X =

1 x z
0 1 y
0 0 1

 , Y =

1 x z
0 1 y
0 0 1

 , Z =

1 x z
0 1 y
0 0 1

 ,

with [X ,Y ] = Z and all other brackets vanish. So {X ,Y } is a bracket generating. Its
trajectories (paths tangent to V1 = span({X ,Y })) are called horizontal paths. The
sub-Riemannian (or Carnot-Carathéodory) metric on Heis,

d(p, q) = inf{length(γ) ; γ horizontal path joining p to q},

is left-invariant and multiplied by t by δt .

The distribution of planes V1 is the kernel of the left-invariant differential 1-form
θ = dz − x dy .
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Small R-balls are squeezed in the z direction, they have volume R4,

t

UNIT SMALL

δ

Hausdorff dimension equals 4. Vertical lines have Hausdorff dimension 2. Only
(rectifiable) horizontal curves have finite 1-dimensional Hausdorff measure.

Metricly very different from Euclidean 3-space. How much ?
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Quasisymmetric Hölder-Lipschitz equivalence problem

Bi-Lipschitz equivalence of contact manifolds
Bi-Lipschitz embedding Heis in L1

Bi-Lipschitz embedding snowflakes of Heis in RN
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Lecture 1

Metric problems in sub-Riemannian geometry

What do sub-Riemannian manifolds say, from the metric viewpoint ? Here is a choice
of problems which are open even in dimension 3.

1 Bi-Lipschitz equivalence of contact manifolds

2 Bi-Lipschitz embedding Heis in L1

3 Bi-Lipschitz embedding snowflakes of Heis in RN

4 Hölder equivalence problem

5 Hölder-Lipschitz equivalence problem

6 Quasi-symmetric Hölder-Lipschitz equivalence problem

I comment on each of them. The sequel of the course will focus on 4.
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A contact structure on a 3-manifold is a step 2 plane distribution.

Theorem (Bennequin 1983, Eliashberg 1989, 1992)

Up to C1 diffeomorphisms, there are exactly 2 different contact structures on R3.

Question

Does there exist a locally bi-Lipschitz homeomorphism between the tight (standard)
contact structure and the overtwisted (Lutz) contact structure ?

At first sight, none of the classical contact invariants (overtwisted disks, Lutz tubes,
Thurston-Bennequin numbers,...) seems to be preserved by bi-Lipschitz
homeomorphism.
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Quasi-symmetric Hölder-Lipschitz equivalence problem

A contact structure on a 3-manifold is a step 2 plane distribution.

Theorem (Bennequin 1983, Eliashberg 1989, 1992)

Up to C1 diffeomorphisms, there are exactly 2 different contact structures on R3.

Question

Does there exist a locally bi-Lipschitz homeomorphism between the tight (standard)
contact structure and the overtwisted (Lutz) contact structure ?

At first sight, none of the classical contact invariants (overtwisted disks, Lutz tubes,
Thurston-Bennequin numbers,...) seems to be preserved by bi-Lipschitz
homeomorphism.

P. Pansu Differential forms and the Hölder equivalence problem
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Theorem (Semmes 1996, Pauls 2001)

No bi-Lipschitz embedding of Heis in Lp if 1 < p <∞.

Proof A.e., there is a differential, a group homomorphism Df : Heis → Lp , which is
bi-Lipschitz. But Df has a kernel, contradiction. q.e.d.

Theoretical computer science (hardness of approximation of SPARSEST CUT)
motivates the

Conjecture (Lee-Naor 2006)

For every 1-Lipschitz map of the R-ball in Heis into L1, there are points whose
distance is decreased at least by a factor of (log R)1/2−ε, ∀ε > 0.

Known for L1 with some weaker exponent δ < 1
2

(Cheeger-Kleiner-Naor 2010).
Quantitative differentiability.
Known if L1 is replaced by Lp , 1 < p ≤ 2, with sharp exponent 1

2
(Lafforgue-Naor

2012). Functional inequality.

Embedding theory raises new questions: Heism is Markov 4-convex (Li, 2014).
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Gromov’s cochain approach to the Hölder equivalence problem
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Quasisymmetric Hölder-Lipschitz equivalence problem

Bi-Lipschitz equivalence of contact manifolds
Bi-Lipschitz embedding Heis in L1

Bi-Lipschitz embedding snowflakes of Heis in RN
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Remark: a log perturbation of the Carnot metric bi-Lipschitz embeds in L2. Can one
do this in finite dimension ?

A snowflake of metric space (X , dX ) is X 1−ε = (X , d1−ε
X ).

The Assouad-Bouligand dimension dimAB(X ) is the infimal δ such that the number of
disjoint r -balls in an R-ball is O((R

r
)δ).

Theorem (Assouad 1983)

If dimAB(X ) ≤ δ, X 1−ε has a L-bi-Lipschitz embedding into RN , with N = N(δ, ε),
L = L(δ, ε).

Improved by Naor-Neiman 2012: N = N(δ) = O(δ).

Question

What is the optimal embedding dimension for Heis ?

Easy: N ≥ 5.
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Hölder equivalence problem
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Metric problems in sub-Riemannian geometry
Gromov’s dimension approach to the Hölder equivalence problem
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Remark: The obvious map R3 → Heis is C1/2-Hölder continuous, and its inverse is
Lipschitz.

Question (Hölder equivalence problem, Gromov 1993)

Let M be a sub-Riemannian manifold. For which α ∈ (0, 1) does there exist locally a
homeomorphism from Euclidean space to M which is Cα-Hölder continuous ?

Question (Hölder-Lipschitz equivalence problem)

Idem, but require a Lipschitz inverse.

Definition

Let α(M) = sup{α ∈ (0, 1) | ∃ locally a Cα homeomorphism Rn → M}.

Theorem (Gromov 1993)

Let metric space X have dimension n, Hausdorff dimension Q. Then α(X ) ≤ n
Q

.

Let sub-Riem. M have dimension n, Hausdorff dimension Q. Then α(M) ≤ n−1
Q−1

.

Let M be a 2m + 1-dimensional contact manifold. Then α(M) ≤ m+1
m+2

(≤ 2m
2m+1

).
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Definition

Let M be a Riemannian manifold. Let −1 ≤ δ < 0. Say M is δ-pinched if sectional
curvature ranges between −1 and δ. Define the optimal pinching δ(M) of M as the
least δ ≥ −1 such that M is bi-Lipschitz to a δ-pinched complete simply connected
Riemannian manifold.

Example: Complex hyperbolic plane H2
C is − 1

4
-pinched. Is it true that δ(H2

C) = − 1
4

?

Facts.
Negatively curved manifolds M have a visual sphere ∂M, equipped with a visual
metric.
If M is δ-pinched, polar coordinates define a C

√
−δ-Hölder homeomorphism from

the round sphere S → ∂M, with 1-Lipschitz inverse.
Bi-Lipschitz maps between negatively curved Riemannian manifolds induce
quasisymmetric maps between ideal boundaries.

1
R visual sphere

o

d (a,b)=e!R
o

b
a

distorsion(f)=sup{R/r}

R

r

f

P. Pansu Differential forms and the Hölder equivalence problem
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Quasi-symmetric Hölder-Lipschitz equivalence problem

Definition

Let M be a Riemannian manifold. Let −1 ≤ δ < 0. Say M is δ-pinched if sectional
curvature ranges between −1 and δ. Define the optimal pinching δ(M) of M as the
least δ ≥ −1 such that M is bi-Lipschitz to a δ-pinched complete simply connected
Riemannian manifold.

Example: Complex hyperbolic plane H2
C is − 1

4
-pinched. Is it true that δ(H2

C) = − 1
4

?

Facts.
Negatively curved manifolds M have a visual sphere ∂M, equipped with a visual
metric.
If M is δ-pinched, polar coordinates define a C

√
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Definition

αqs(X ) = sup{α ∈ (0, 1) | ∃ locally a Cα homeomorphism with Lipschitz inverse from
Euclidean space to a metric space quasisymmetric to X}

By definition,
√
−δ(M) ≤ αqs(∂M).

Example: The visual boundary of complex hyperbolic plane is a sub-Riemannian
3-sphere, quasisymmetric to Heis. Note that αqs(Heis) ≥ α(Heis) ≥ 1

2
.

Conjecture

αqs(Heis) = 1
2

.

If the proof survives and time permits, I will explain

Theorem

αqs(Heis) ≤ 2
3

.
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More on complex hyperbolic spaces. The ball B ⊂ Cm has biholomorphism group
PU(m, 1), which preserves a complete Riemannian metric on B and the contact
structure of complex tangents on ∂B. PU(m, 1) has a subgroup S = R o Heis2m−1

acting simply transitively on the ball. The conjugation action of R on Heis2m−1 is by
dilations. The induced metric on S is of the form dt2 + δ∗t g0, for some left-invariant
Riemannian metric g0 on Heis2m−1. It is − 1

4
-pinched in the t direction, since

δ∗t g0 = e2tgV1
+ e4tgV2

, thus in all directions by PU(m, 1)-symmetry. R factors are
geodesics, Heis2m−1-orbits are horospheres.

!

horospheres

geodesics

The visual sphere identifies with ∂B equipped with a sub-Riemannian metric.
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Metric problems in sub-Riemannian geometry
Gromov’s dimension approach to the Hölder equivalence problem
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Hypersurfaces
Euclidean isoperimetric inequality
Forms of weight Q − 1
Hausdorff dimensions of higher codimensional subsets

Lecture 2

Gromov’s dimension approach to the Hölder equivalence problem

Source: Gromov’s Carnot-Carathéodory spaces seen from within.
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Gromov uses Hausdorff dimension of subsets of given topological dimension: if all
subsets of X of topological dimension k have Hausdorff dimension ≥ k ′, then
α(X ) ≤ k

k′ .

Theorem (Gromov, 1993)

G Carnot group of dimension n and Hausdorff dimension Q. Then α(G) ≤ n−1
Q−1

.

Proof. Use isoperimetric inequality for piecewise smooth domains D ⊂ M,

vol(D)Q−1/Q ≤ const.HQ−1(∂D). (∗)

It follows that the boundary of any non smooth domain Ω has Hausdorff dimension at
least Q − 1. Indeed, cover ∂Ω with balls Bj and apply (*) to Ω ∪

⋃
Bj . This gives a

lower bound on HQ−1(∂(
⋃

Bj )) ≤
∑
HQ−1(∂Bj ) ≤ const.

∑
diameter(Bj )

Q−1.
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Metric problems in sub-Riemannian geometry
Gromov’s dimension approach to the Hölder equivalence problem
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Proof of Euclidean isoperimetric inequality (with unsharp constant)

vol(D)n−1/n ≤ const.Hn−1(∂D).

Fix point p. Let vol = dx1 ∧ ... ∧ dxn be the volume form. Let ξ(q) = q−p
|q−p|n be a

radial vectorfield and ωp = ιξω.

Then dωp = 0 and the integral of ω on the boundary
of every smooth domain containing p equals 1. Use Fubini.

vol(D) =

∫
D

(

∫
∂D

ωp) dp ≤
∫
D×∂D

|p − q|1−n dq dp =

∫
∂D

(

∫
D
|p − q|n−1 dp) dq.

Replacing D by a ball B(q,R) with the same volume increases the integral,∫
D
|p − q|1−n dp ≤

∫
B(q,R)

|p − q|1−n dp = R = vol(D)1/n.

Key step is estimate |ωp | ≤ |p − q|1−n. It follows from homogeneity under dilations,

δ∗t ω0 = ω0,

since n − 1-forms have pointwise homogeneity n − 1.
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Gromov’s cochain approach to the Hölder equivalence problem
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On Carnot groups, n − 1-forms come in several homogeneities called weights.

Definition

On a Carnot group, a left invariant form λ ∈ Λkg∗ has weight w if δ∗t λ = twλ. A
smooth differential form ω has weight w if it is a linear combination of left-invariant
forms of weight w .

Example: on Heis, dx , dy , θ = dz − xdy are a basis of invariant 1-forms, with dx , dy
of weight 1 and θ of weight 2. 2xdx ∧ dy has weight 2, (ydx + 2xdy)∧ θ has weight 3.

Lemma

On a Carnot group G , if a smooth differential form ω of weight w satisfies δ∗2ω = ω
on G \ {e}, then |ω(q)| ≤ const. d(q, e)−w .

Indeed, {δ∗t ω ; t ∈ R} is a compact set, it is bounded on the unit sphere S. Let
ω =

∑
aiλi with left-invariant λi . If d(q, e) = t, q = δt(q′) ∈ S ⊂ G ,

d(q, e)w |ω|(q) =
∑
|twai (q)| = |

∑
ai ◦ δt(q′)δ∗t λi | = |δ∗t ω|(q′) ≤ const.
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A closed n − 1-form ω on G \ {e} such that δ∗2ω0 = ω0, with integral 1 on spheres, is
a representative of the relevant class in Hn−1(M), where M = (G \ {e})/ < δ2 >.

Lemma

Every cohomology class in Hn−1(M) has a representative of weight Q − 1.

Proof for Heis. Let ω = a dx ∧ dy + β ∧ θ be a closed 2-form. Then

ω + d(a θ) = (da + β) ∧ θ

has weight 3.

Proof in general. All left-invariant n − 1-forms are closed. Under dilations, the
cohomology of left-invariant forms splits

Hn−1(g) =
w⊕

Hn−1,w (g).

Poincaré duality gives Hn−1,w ' H1,Q−w = 0 unless Q − w = 1. Therefore for every
left-invariant form λ of weight w 6= Q − 1, ∃ left-invariant µ of weight w such that
dµ = λ. Write ω =

∑
aiλi , λi left-invariant of weight wi . If λi = dµi , substracting

d(aiµi ) replaces aiλi by dai ∧ µi of weight wi + 1. After finitiely many steps, only
terms of weight Q − 1 remain. q.e.d.
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Gromov’s cochain approach to the Hölder equivalence problem
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Rumin’s complex
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Recall the role of dimensions of subsets: if all subsets of topological dimension k have
Hausdorff dimension ≥ k ′, then α(M) ≤ k

k′ .

To get lower bounds on Hausdorff dimension of subsets, Gromov constructs local
foliations by horizontal submanifolds. If there are enough such dimension k foliations,
all subsets of topological dimension n − k have Hausdorff dimension ≥ Q − k,
therefore α(M) ≤ n−k

Q−k
.

Constructing horizontal submanifolds amounts to solving a system of PDE’s. If k = 1,
it is an ODE, the method applies to all (equiregular) sub-Riemannian manifolds.
Gromov solves the relevant PDE for contact 2m + 1-manifolds and k = m, and, more
generally, for generic h-dimensional distributions, and k such that h − k ≥ (n − h)k.
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Lecture 3

Gromov’s cochain approach to the Hölder equivalence problem

Source: Gromov’s Carnot-Carathéodory spaces seen from within.
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Metric problems in sub-Riemannian geometry
Gromov’s dimension approach to the Hölder equivalence problem
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Definition

On a metric space X , a (straight) q-cochain of size ε is a function c on q + 1-uples of
diameter ≤ ε. Its ε-absolute value is

|c|ε = sup{c(∆) ; diam(∆) ≤ ε}.

In other words, straight cochains of size ε coincide with simplicial cochains on the
simplicial complex whose vertices are points of X and a q-face joins q + 1 vertices as
soon as all pairwise distances are ≤ ε. Therefore, they form a complex C.ε. There is a
dual complex of chains C.,ε.

Lemma

Assume X is a manifold with boundary, or bi-Hölder homeomorphic to such, then the
inductive limit complex lim−→ C

·
ε computes cohomology.

Definition

Given a cohomology class κ and a number ν > 0, one can define the ν-norm

||κ||ν = lim inf
ε→0

ε−ν inf{|c|ε | cochains c of size ε representing κ}.
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Rumin’s complex
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Hölder covariance
Weights of differential forms
Algebraic weights

Definition

On a metric space X , a (straight) q-cochain of size ε is a function c on q + 1-uples of
diameter ≤ ε. Its ε-absolute value is

|c|ε = sup{c(∆) ; diam(∆) ≤ ε}.

In other words, straight cochains of size ε coincide with simplicial cochains on the
simplicial complex whose vertices are points of X and a q-face joins q + 1 vertices as
soon as all pairwise distances are ≤ ε. Therefore, they form a complex C.ε. There is a
dual complex of chains C.,ε.

Lemma

Assume X is a manifold with boundary, or bi-Hölder homeomorphic to such, then the
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Definition

Let X be a metric space, let q ∈ N. Define the metric weight MWq(X ) as the
supremum of numbers ν such that there exist arbitrarily small open sets U ⊂ M and
nonzero straight cohomology classes κ ∈ Hq(U,R) with finite ν-norm ||κ||ν < +∞.

Proposition

In Euclidean space, all straight cocycles c representing a nonzero class κ of degree q
satisfy |c|ε ≥ const.(κ) εq . In other words, ||κ||q > 0.

Proof . Fix a cycle c ′ such that κ(c ′) > 0. Subdivide it as follows : fill simplices with
affine singular simplices, subdivide them and keep only their vertices. This does not
change the homology class. The number of simplices of size ε thus generated is
≤ const.(c ′) ε−q . For any representative c of size ε of κ,

κ(c ′) = c(c ′) ≤ const. ε−q |c|ε. q.e.d .

Corollary

Euclidean n-space has MWq ≤ q for all q = 1, . . . , n − 1 (later, we shall see that
MWq = q).
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MWq = q).
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Let G be a Carnot group with Lie algebra g. Left-invariant differential forms on G
split into homogeneous components under the dilations δε,

Λ·g∗ =
⊕
w

Λ·,w where Λ·,w = {α | δ∗εα = εwα}.

Therefore Lie algebra cohomology splits Hq(g) =
⊕

w Hq,w (g).

Example

If G = Heis2m+1 is the Heisenberg group, for each degree q 6= 0, 2m + 1,

ΛqG∗ = Λq,q ⊕ Λq,q+1,

where Λq,q = Λq(V 1)∗ and Λq,q+1 = Λq−1(V 1)∗ ⊗ (V 2)∗.

Notation: Λq,≥w =
⊕
w′≥w

Λq,w′ . The space of differential forms which are smooth

linear combinations of left-invariant forms from Λq,≥w is denoted by Ωq,≥w .
Note that each Ω·,≥w is a differential ideal in the algebra of all differential forms Ω·.
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Proposition

G Carnot group. Let U ⊂ G be a bounded open set with smooth boundary. Let ω be
a closed differential form on U of weight ≥ w . Then, for every ε small enough, the
cohomology class κ ∈ Hq(U,R) of ω can be represented by a straight cocycle cε
(maybe defined on a slightly smaller homotopy equivalent open set) such that
|cε|ε ≤ const. εw . In other words, ||κ||w < +∞.
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Fill in all straight simplices in G of unit size with such affine singular simplices σ1.
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cε(σ) =

∫
σε

ω.

Since ω is closed, Stokes theorem shows that cε is a cocycle. Its cohomology class in
Hq(U′,R) ' Hq(U,R) is the same as ω’s. By compactess, if λ ∈ Λ·,w ,

sup
σ1

∫
σ1

λ ≤ const.(λ), so sup
σε

∫
σε

λ ≤ const.(λ) εw . Summing over components of ω,

|cε(σ)| ≤ const.(ω) εw . q.e.d .
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Definition

G Carnot group. The algebraic weight AWq(G) as the largest w such that there exists
arbitrarily small open sets with smooth boundary U ⊂ G and nonzero classes in
Hq(U,R) which can be represented by closed differential forms of weight ≥ w .

We just proved that MWq ≥ AWq .

Corollary

Let G be a Carnot group. Then for all q = 1, . . . , n − 1, α(G) ≤ q
AWq

.

So our goal now is to show that for certain Carnot groups, for certain degrees q, in
every open set, every closed differential q-form is cohomologous to a form of high
weight.
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It turns out that the obstruction for cohomologing q-forms towards weight > w is
Hq,w (g).

Theorem (Rumin 2005)

Let G be a Carnot group. Assume that, in the cohomology of the Lie algebra,

Hq,w′ (g) = 0 for all w ′ < w . Then AWq(G) ≥ w .

This will be proven later. First reformulate and illustrate. On Carnot groups, the
grading of cohomology is compatible with Poincaré duality, Hq,w (g) = Hn−q,Q−w (g).
So

Hn−q(g) = Hn−q,≤Q−w (g) ⇒ AWq(G) ≥ w .

Example

Degree n− 1. On any Carnot Lie algebra g, closed 1-forms belong to (V 1)∗ = Λ1,1, so
H1(g) = H1,1(g), and AWn−1(M) ≥ Q − 1.

From now on, the source is Rumin’s lecture notes An introduction to spectral and
differential geometry in Carnot-Carathéodory spaces.
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Example

2m + 1-dimensional contact manifolds. Closed m-forms belong to Λm,m. Therefore
Hm(g) = Hm,m(g), AWm+1(M) ≥ m + 2 and α ≤ m+1

m+2
.

Indeed, if ω ∈ Λm,m+1, ω = θ ∧ φ where θ ∈ (V 2)∗, φ ∈ Λm−1,m−1,
(dω)m+1,m+1 = (dθ) ∧ φ 6= 0 since dθ is symplectic on ∆.

Example

Engel case. The nonzero weight spaces in H·(g) are H0,0, H1,1, H2,3, H2,4, H3,6 and
H4,7. So the best bound on α(G) is 1

2
, achieved for degree 3. Disappointing.

Example

Quaternionic Heisenberg group Heis4m−1
H . Julg 1995 shows that Hq(g) = Hq,≥q+2 if

q ≥ 2m and Hq(g) = Hq,≥q+3 if q ≥ 3m. Thus α(G) ≤ 2m
2m+2

= 3m
3m+3

, obtained
when considering degrees 2m and 3m.

The method just exposed seems to cover all presently known results on the Hölder
homeomorphism problem.
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Proof of Rumin’s theorem in degree n − 1: reformulation of argument in proof of
isoperimetric inequality.

Notation: d0 = exterior differential on left-invariant forms, seen as a 0-order
differential operator on differential forms.

Write ω = ω<Q−1 + ωQ−1. d0 = 0 in degree n − 1 and Hn−1(g) = Hn−1,Q−1 imply

that ω<Q−1 ∈ im(d0). Pick a linear inverse d−1
0 on im(d0). Consider

rω = ω − dd−1
0 (ω<Q−1). Then weight(rω) > weight(ω), unless ω<Q−1 = 0.

Therefore iterating leads to a cohomologous form of weight Q − 1.

General case: not all left-invariant q-forms are closed. Instead of considering 1− dd−1
0

on closed forms, construct a homotopy of chain complexes r = 1− dd−1
0 − d−1

0 d .
Pick homogeneous complements W0 of ker(d0) in Λ·g∗, and E0 of im(d0) in ker(d0).

Λ·g∗ = im(d0)⊕ E0 ⊕W0.

Set d−1
0 = 0 on E0 ⊕W0 and extend to Λ·g∗ using the inverse of d0 : im(d0)→W .

Denote by π0 : Λ·g∗ → E0 the projector. d−1
0 and π0 extend to differential forms,

denote by E0 = im(π0).
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Metric problems in sub-Riemannian geometry
Gromov’s dimension approach to the Hölder equivalence problem
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Quasisymmetric Hölder-Lipschitz equivalence problem

Rumin’s construction
Proof of Rumin’s assertions
Further applications of Rumin’s complex

Proof of Rumin’s theorem in degree n − 1: reformulation of argument in proof of
isoperimetric inequality.

Notation: d0 = exterior differential on left-invariant forms, seen as a 0-order
differential operator on differential forms.
Write ω = ω<Q−1 + ωQ−1. d0 = 0 in degree n − 1 and Hn−1(g) = Hn−1,Q−1 imply

that ω<Q−1 ∈ im(d0). Pick a linear inverse d−1
0 on im(d0). Consider

rω = ω − dd−1
0 (ω<Q−1). Then weight(rω) > weight(ω), unless ω<Q−1 = 0.

Therefore iterating leads to a cohomologous form of weight Q − 1.

General case: not all left-invariant q-forms are closed. Instead of considering 1− dd−1
0

on closed forms, construct a homotopy of chain complexes r = 1− dd−1
0 − d−1

0 d .
Pick homogeneous complements W0 of ker(d0) in Λ·g∗, and E0 of im(d0) in ker(d0).

Λ·g∗ = im(d0)⊕ E0 ⊕W0.

Set d−1
0 = 0 on E0 ⊕W0 and extend to Λ·g∗ using the inverse of d0 : im(d0)→W .

Denote by π0 : Λ·g∗ → E0 the projector. d−1
0 and π0 extend to differential forms,

denote by E0 = im(π0).

P. Pansu Differential forms and the Hölder equivalence problem
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Theorem (Rumin 1999)

Let r = 1− dd−1
0 − d−1

0 d . Iterates of r stabilise to a differential operator π which is
again a homotopy equivalence of chain complexes. π is a projector onto the
subcomplex

E = ker(d−1
0 ) ∩ ker(d−1

0 d).

The restriction of π0 to E is an isomorphism onto E0, with inverse the restriction of π
to E0.

Corollary: estimate of algebraic weight follows. If ω is closed, π(ω) = π ◦ π0 ◦ π(ω) is
cohomologous to it. The weights present is E0 = im(π0) are those of the cohomology.
π, like d , does not decrease weights. Thus weight(π(ω)) is as high as the minimum
weight in cohomology.

Example: Heis.
ker(d0) = span{1, dx , dy , dx ∧ dy , dx ∧ θ, dy ∧ θ, dx ∧ dy ∧ θ}.
im(d0) = span{dx ∧ dy}.
W0 = span{θ}.
E0 = span{1, dx , dy , dx ∧ θ, dy ∧ θ, dx ∧ dy ∧ θ}.
No need to iterate. π = r maps adx + bdy + cθ to adx + bdy + (Ya− Xb)θ and
edx ∧ dy + fdx ∧ θ + gdy ∧ θ to (Xe + f )dx ∧ θ + (Ye + g)dy ∧ θ.
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Proof 1. Stabilization. By construction, r = 1 on E. Let W denote the space of
differential forms which belong to W at each point. Then, on W , r is nilpotent.
Indeed, d−1

0 = 0 on W so r = 1−d−1
0 d = −d−1

0 (d −d0) mapsW to itself and strictly
increases weight. Since rd = dr , the same is true on dW and thus on F :=W + dW.

2. Claim: Ω· = E ⊕ F .
Since N = d−1

0 (d − d0)|W is nilpotent, 1 + N has a differential inverse

P = 1 +
∑

(−1)iN i defined on W. Set Q = Pd−1
0 : Ω· →W. We check that

π = 1− Qd − dQ is the projector onto E with kernel F . By definition, d−1
0 (E) = 0,

d−1
0 d(E) = 0 so π = 1 on E. Also d−1

0 Q = 0, d−1
0 dQ = (1 + N)Pd−1

0 = d−1
0 so

d−1
0 π = 0. Since dπ = πd , d−1

0 dπ = 0 so im(π) ⊂ E, thus π is a projector onto E.
Use ker(π) = im(dQ + Qd). im(Q) ⊂ W so im(dQ) ⊂ dW, and

im(Qd + dQ) ⊂ W + dW. Conversely, on W, Qd = Pd−1
0 d = 1 so W ⊂ ker(π).

Since dπ = πd , dW ⊂ ker(π), so ker(π) = F .

3. π and π0 are inverses of each other on E0 (resp. E). Since

im(π0) = E0 ⊂ ker(d−1
0 ) ⊂ ker(Q), Qπ0 = 0. Since im(Q) ⊂ W ⊂ ker(π0),

π0Q = 0. Thus π0 ◦ π ◦ π0 = π0(1− Qd − dQ)π0 = π0, i.e. π0 ◦ π|E0
= 1. Since

E ⊂ ker(d−1
0 ) =W ⊕ E0 and W ⊂ ker(π0), ker(π0|E) =W ∩ E = {0}, so π0|E is

injective, and π ◦ π0|E = 1.
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Rumin’s complex
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Definition

The differential operator dc = π0dπ on E0 is Rumin’s complex. Computes
cohomology.

Example: Heis. E0
0 = Ω0, E3

0 = Ω30, E1
0 = span{dx , dy}, E2

0 = span{dx ∧ θ, dy ∧ θ}.
On forms of degrees 0, 2 and 3, dc = d . On 1-forms, dc is a second order operator,
dc (adx + bdy) = (YXa− XXb)dx ∧ θ + (−XYb + YYa)dy ∧ θ.

Applications
Rumin 1994, 2000, Ge 1994. Asymptotics for the spectrum of the Laplace-Beltrami
operator on differential forms for sequences of Riemannian metrics converging to a
sub-Riemannian metric.
Julg-Kasparov 1995. Baum-Connes conjecture for SU(n, 1).
Rumin 2002. Estimates on Novikov-Shubin invariants of nilpotent groups (large scale
spectral invariants).
Julg 2002. Baum-Connes conjecture for Sp(n, 1).
Biquard-Herzlich-Rumin 2006. Expressing secondary invariants of compact
CR-manifolds.
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Lecture 4

Quasisymmetric Hölder equivalence problem
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Recall Gromov’s slogan:

Here
Euclidean

∃ k-dimensional subset with
Hausdorff dimension ≤ k

There
Carnot

∀ k-dimensional subset,
Hausdorff dimension ≥ k ′

then α(Carnot) ≤ k
k′ .

Next is a result where

Here
Euclidean

explicit family of subsets with
Hausdorff dimension ≤ k

There
Carnot

for almost every image subset,
Hausdorff dimension ≥ k ′

then α(Carnot) ≤ k
k′ .

Furthermore, the argument uses quasisymmetric invariants, whence
αqs(Carnot) ≤ k

k′ .
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Let f : Rn → G be a Hölder homeomorphism with Lipschitz f −1 : G → Rn. Let
v : Rn → R be a coordinate function. Then u = v ◦ f −1 is Lipschitz. Imagine that
coarea inequality holds:

∫
G
LipQu ≤

∫
R

(∫
u−1(t)

LipQ−1
u

)
dt ≤ const.

∫
R
HQ−1(u−1(t)) dt. (1)

Here, Lipu denotes the local Lipschitz constant. Since, for non constant u,∫
X LipQu > 0, this shows that there exists t ∈ R such that HQ−1(u−1(t)) > 0, and

therefore u−1(t) has Hausdorff dimension at least Q − 1.

Unfortunately, Magnani 2002’s coarea inequality goes in the opposite direction!

Strategy: replace conformally invariant integrals
∫
LipQu with packing measures which

are quasisymmetric invariants and satisfy coarea inequality in the right direction. If
possible, use vector valued function u.
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Let N be an integer, let ` ≥ 1. Let X be a metric space. An (N, `)-packing is a
countable collection of balls {Bj} such that the collection of concentric balls `Bj has
multiplicity < N.

Let φ be a positive function on the set of balls in X . Define

Φp;ε
N,`(A) = sup{

∑
i

φ(Bi )
p ; {Bi} (N, `)−packing of X , centered on A, of mesh ≤ ε}.

Define the packing pre-measure associated to φ by

Φp
N,`(A) = lim

ε→0
Φp;ε

N,`(A).

Example: π(B) =radius(B) leads to “usual” packing measure Πp and packing
dimension. It is Hölder covariant.

Example: let u : X → M measure space. eu(B) =measure(B) leads to p-energy Ep
u . It

is quasisymmetry invariant: if g is quasisymmetric, ∀`, ∃`′ such that

Ep
u,N,`(A) ≤ Ep

u′,N,`′ (g(A)).
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Proposition

Let X be a metric space. Let u : X → M be a map to a measure space (M, µ). Then

Ep
u (X ) ≤

∫
M
Ep−1
u (u−1(m)) dµ(m).

∑
i

µ(u(Bi ))p =
∑
i

(

∫
M

1u(Bi )
(m) dµ(m))µ(u(Bi ))p−1

=

∫
M

(
∑
i

1u(Bi )
(m)µ(u(Bi ))p−1) dµ(m)

=

∫
M

(
∑

{i ; m∈u(Bi )}
µ(u(Bi ))p−1) dµ(m)

≤
∫
M
Ep−1;2ε
u dµ(m). q.e.d .

If u is Lipschitz and µ(B) ∼radius(B)d in M, Ep−1
u ≤ Πd(p−1), thus

Ep
u > 0 ⇒ ∃m, dim(u−1(m)) ≥ d(p − 1).

P. Pansu Differential forms and the Hölder equivalence problem
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Corollary

Let f : Rn → G be a Cα-Hölder homeomorphism, with Lipschitzf −1. If v : Rn → Rd

is a submersion and u = v ◦ f −1 satisfies E
Q/d
u > 0, then αqs(G) ≤

n − d

Q − d
.

Proposition

If u : G → R is continuous and non constant, EQ
u > 0.

Corollary: αqs(G) ≤ n−1
Q−1

.

Proof Length-area method. Let Γ denote the family of unit segments parallel to a side
of unit n-cube. For all positive functions ρ on the square,∫ 1

0
(

∫
γ
ρ ds) dγ ≤

∫
ρn dx1 . . . dxn.

Replace integrals with packing (resp. covering) measures, apply to family of parallel
horizontal line segments in G .
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Proposition

Let X be a metric space. Let Γ be a family of subsets of X , equipped with a measure
dγ. For each γ ∈ Γ, a probability measure mγ is given on γ. Let p ≥ 1. Assume that∫

{γ∈Γ ; γ∩B 6=∅}
mγ(γ ∩ `B)1−p dγ ≤ τ.

Then, for every function φ on the set of balls of X ,

Φp(X ) ≥
1

τ

∫
Γ

Φ̃1(γ)p dγ.

Proof Let 1i (γ) = 1 iff γ ∩ Bi 6= ∅. The balls such that 1i (γ) = 1 cover γ, thus

Φ̃1;ε(γ) ≤
∑
i

φ(Bi )1i (γ) =
∑
i

φ(Bi )1i (γ)mγ(γ ∩ `Bi )
1−p
p mγ(γ ∩ `Bi )

p−1
p .

Hölder’s inequality gives

Φ̃1;ε(γ)p ≤
(∑

i

φ(Bi )
p1i (γ)mγ(γ ∩ `Bi )

1−p

)(∑
i

mγ(γ ∩ `Bi )

)p−1

.

Integrate over Γ.
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closed n − 1-form ⇔ map to Rn−1

closed n − 1-form of weight Q − 1 ⇔ map to Rn−1 with horizontal fibers

However, map to Rn−1 is not Lipschitz in general.

On Heis3, weight 3 2-forms give rise to cocycles such that E4/3 <∞ thus E2 = 0.
But these correspond to maps which are not Lipschitz at all.

Question

Let X be a metric space which is quasisymmetric to an open subset of Heis3. Let
u : X → R2 be Lipschitz and open. Show that Ep

u > 0 for all p < 2.

This would follow from

Question

Let u : Heis → R2 be continuous and open. Assume that both components u1 and u2

satisfy Ẽ4
ui
<∞. Show that u is a.e. differentiable and infer that E2

u > 0.

P. Pansu Differential forms and the Hölder equivalence problem
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