** Asymptotic expansions of holonomy **

Joint with Pierre Pansu.

**1. Motivation **

Given a connection on a principal bundle , holonomy along a based loop of is an element of resulting from lifting horizontally to . We look for an expression such that is a good approximation of holonomy when is short,

We want that be simpler to compute than holonomy, and be related to curvature.

Hatton-Choset: motion of a snake with two joins. , . Experimentalists have been led to choose the Coulomb gauge, and for the integral over a disk spanning of curvature expressed in Coulomb gauge.

In this practical example, motions are tangent to a sub-bundle of the tangent bundle of . Hence our interest in expansions which are particularly efficient on such curves. We call this setting *sub-Riemannian*.

Sub-Riemannian curvature is not easy to define. The obvious approach of using adapted connections on the tangent bundle is not illuminating.

**2. Results **

- Asymptotic, gauge-free formula in Euclidean space.
- Riemannian case not that different.
- Sub-Riemannian case suggests a notion of curvature.
- For certain sub-Riemannian structures,

** 2.1. Euclidean case **

Dilations define radial fillings of loops. Use radial gauge (frame is parallel along rays through the origin). They turn out to be optimal. Using radial gauge, integrate curvature over radial filling. This defines

Say a differential form has weight if dilates are . Use radial gauge to define weight of forms on .

Theorem 1If the curvature has weight , thenFurthermore, one can expand in termes of Taylor’s expansion of curvature.

Since curvature has weight at least 2, one gets a 4-th order approximation.

** 2.2. Sub-Riemannian case **

The flat sub-Riemannian case corresponds to Carnot groups, i.e. a Lie group whose Lie algebra has a gradation

and is generated by . **Example**: Heisenberg group.

Fix a norm on . Left translates of define a sub-Riemannian metric, for which dilations on are homothetic.

According to Le Donne, sub-Riemannian Carnot groups are characterized by being the only locally compact homogeneous geodesic metric spaces with homothetic homeos.

Carnot groups come with a left-invariant horizontal basis, we pick a connection on the tangent bundle which makes it parallel. It has torsion. We combine it with the principal bundle connection to define iterated covariant derivatives of curvature. We organize them according to weights adapted to the Lie algebra grading. The above theorem extends.

** 2.3. Horizontal holonomy **

Since we are interested only in holonomy along horizontal loops, we have the freedon to change the connection outside the horizontal subbundle.

Chitour-Grong-Jean-Kokkonen: using this freedom, there are choices which minimize the curvature in the sense that as many components as possible vanish identically. This tends to increase the weight of curvature.

**Example**: on 3-dimensional Heisenberg group, the preferred connection has curvature which vanishes on the horizontal distribution, hence has weight instead of 2. Above Theorem provides a 6-th order expansion, whose terms can be computed algebraically.

More generally, on free -step nilpotent Lie groups, the curvature of a preferred connection has order at least , whence a -th order expansion whose terms are linear in curvature (in fact, in the preferred curvature).

We expect to use it to refine the Euclidean expansion.

**3. Question **

What does this give in case of the two-joints snake? Requires to push computations further.