** Exotic lattices and simple locally compact groups, V **

Today, I conclude the discussion and explain how to get simple cocompact lattices in products of trees.

Before, I need to complete the issue of irreducibility.

**1. Recap **

We consider leafless trees with at least three ends. Let be a cocompact lattice in the product. What we have proven.

The normal subgroup theorem. A sufficient condition in order that be hereditarily just infinite: the closure of the projections to both factors are simple by compact.

A sufficient condition for to be nonresidually finiteness: the projection of to one factor is noninjective and is irreducible. It also follows that is not just infinite (because of the kernel of the projection), so we will have to deal with incompatible criteria.

Sufficient conditions for to be irreducible: the projection to one factor is non-discrete or the stabilizer of some vertex of one factor is inseparable.

The second criterion is due to Wise, the first to Mozes.

**2. Irreducibility **

** 2.1. Discreteness criteria **

Definition 1Let be a graph and a group of automorphisms of . The local action of at a vertex is the permutation group acting on edges emanating from .

Theorem 2 (Trofimov-Weiss 1995)Let be a connected, locally finite graph. Let be vertex-transitive, whose local action at every vertex is 2-transitive. If is discrete, then the fixator of every ball of radius 5 is trivial.

The figure 5 arises from the classification of 2-transitive permutation groups, which in turn follows from the classification of finite simple groups. The fact that 5-ball fixators are trivial can be checked by examination of one 6-ball.

A longstanding conjecture is wether 2-transitive can be weakened to primitive.

With a stronger assumption, one gets a simpler result:

Theorem 3 (Burger-Mozes 2000)Let be a -regular tree, , and be vertex transitive, and the local action is alternating group . Then

- Either
and then is discrete.

- Or is a wreath product , and then is non-discrete, its closure has a simple subgroup of index 2.

Up to conjugation in , there is a unique closed non-discrete vertex transitive subgroup whose local action at every vertex is alternating, denoted by .

The list of 2-transitive groups is , and a few simple groups of Lie type and of exceptional type. So the alternating case is the most frequent. The second most frequent is .

Theorem 4 (Radu 2016)A similar statement holds for local action the full symmetric group . The differences are

- adapted numerics,
- in the non-discrete case, has a simple subgroup of index 8.
- infinitely many conjugacy classes.

** 2.2. Computing the local actions on factors **

This is easy, given a BMW action. For generated by , in the local action on the first factor (edges labelled ), is mapped to the product of transpositions and to the 4-cycle . The group they generate is . Similarly, the local action on the second factor is . For large enough , fixes the 5-ball but not the 6-ball.

From Trofimov-Weiss’ theorem, we conclude that the projection to the second factor is non-discrete, hence is irreducible.

**3. Piling up intermediate results **

** 3.1. Step 1 **

Pick a BMW complex with non-residually finite fundamental group. E.g. of order with fundamental group .

** 3.2. Step 2 **

Build a BMW complex which contains isometrically , such that the local actions of on both factors contain alternating groups.

For this, merely add generators horizontally and vertically. Generically, local actions become full.

** 3.3. Step 3 **

Since contains , it is non-residually finite. For the same reason, it is irreducible. By Burger-Mozes or Radu, plus the normal subgroup theorem, is hereditarily just infinite. Thus it is virtually simple. Indeed, the intersection of all finite index subgroups of is normal, therefore it has finite index, and no normal subgroups.

An explicit example, of order , with local actions and , has been found by Radu, assisted by computer. The methods produces tons of examples.

The resulting group is virtually simple. In fact, we know that the simple finite index subgroup is the normal closure of an explicit element. However, we do not know what the index is.