** Geometric structures, compactifications of representation varieties, and non archimedean geometry **

**1. From geometric structures to representation **

Let be a finitely presented group, and be defined by polynomials. Then is a real algebraic set. The *representation variety* is (not quite Hausdorff, see below).

Geometric structures on manifolds with fundamental group , modelled on acting on some homogeneous space , give rise to representations, their holonomy representations.

For instance, hyperbolic structures on a surface give rise to representations in . It turns out that this defines an injection of Teichmuller space into . It falls into one single component.

**2. Parreau-Thurston compactification of **

It is pretty general, but, for this exposition, we shall focus on .

** 2.1. Geometry of Siegel’s half-space **

acts on the symmetric space

sometimes called Siegel’s half-space. has an invariant Riemannian metric for which the geodesic symmetry s an isometry. This metric is .

Elements of can be viewed as block matrices such that , , are symmetric. The action on is .

There is an explicit formula for the distance, as length of a vector-valued distance. Under , every pair of points of is equivalent to a unique pair where is diagonal with non-increasing entries . Then the vector-valued distance is defined by

It satisfies a form of triangle inequality. The metric is

The higher rank analogue of translation length is the (unique) vector with non-negative entries of smallest Euclidean norm in the closure of . It turns out that is continuous on (a fact that would fail on Euclidean space).

** 2.2. Topology of the representation variety **

orbits in need not be closed. The source of all troubles are unipotent elements. To get rid of them, we stick to reductive representations, i.e. representations which are direct sums of irreducible representations. These are precisely those representations whose orbit is closed. Furthermore, every orbit contains a unique reductive representation in its closure.

Theorem 1is homeomorphic to a subset of some vector space defined by finitely many polynomial inequalities. This is algorithmic.

** 2.3. A projective embedding **

Let . Map a reductive representation to the sequence of its translation vectors . This provides us with a map

Next we compose with projectivization

Theorem 2 (Parreau 2010)The image of has compact closure. Every point of the closure is given by where is an isometric action of on an affine building without global fixed point.

We shall see next time how to relate these actions to homomorphisms into where is a real field.

**Question**. Do these actions come from actions on -trees?