** Infinite torsion subgroups of groups **

**Question**. Let act geometrically on a proper space. Can have an infinite torsion subgroup ?

Expected answer is no.

**Known**. For cube complexes, Wise and Sageev show that a torsion group fixes a point (eventually at infinity). Tits alternative. So answer is no for these.

Coulon and Guirardel have an example of an infinite torsion group acting properly on an infinite dimensional cube complex.

Today, as a kind of therapy, I collect all I know on this irritating open question.

**1. geometry **

In spaces, angles are well defined as limits of Euclidean comparison angles at small scales. Angle is always at most equal to the Euclidean comparison angle.

The visual boundary consists of equivalence classes of unit speed geodesic rays. Shadows of small balls seen from far away define a topology. If space is proper (need not be finite dimensional), is compact and finite dimensional.

Angles in large biangles converge and define the angle metric on , that defines a finer topology. Let denote the corresponding path metric, known as the *Tits metric*. Angle and Tits coincide below level . We denote by the visual boundary equipped with Tits metric’s topology.

**2. Conical limit points **

If , let , the *limit set*, denote the set of limit points of an orbit. A ray is *conical* if some tubular neighborhood of contains an unbounded subset of some orbit.

**Theorem 1** * If has a conical limit point, then there is no bound on the orders of elements of . *

Indeed, there are numbers and elements such that . Define rays

Up to extracting a subsequence, one can assume that converge to a geodesic line uniformly on compact subsets. For , let , and consider points (very close to ), (very close to ), and (very close to ). Hence the angle is almost . Say has order . Then iterates form the vertices of an -gon with equal angles. In a space, the sum of the angles of an -gon is at most , this forces to be large.

**Corollary 2** * Every group has a hyperbolic element. *

**Corollary 3** * If a group is an infinite torsion group, then has no conical limit points. *

**3. Further results **

**Theorem 4** * Let acting geometrically on space . If *

*
** then contains a hyperbolic isometry. *

**Theorem 5** * Let acting geometrically on space . If is infinite torsion group, and if is minimal among such spaces, then is infinite. Furthermore, *

*
** and does not fix a point in . *

### Like this:

Like Loading...

*Related*

## About metric2011

metric2011 is a program of Centre Emile Borel, an activity of Institut Henri Poincaré, 11 rue Pierre et Marie Curie, 75005 Paris, France. See
http://www.math.ens.fr/metric2011/