**1. Metric aspects **

F\o lner’s criterium shows that amenability is a coarse equivalence invariant of groups. A-T-menability is not.

** 1.1. Yu’s Property A **

From now on, we deal with metric spaces . is assumed to be uniformly discrete. Yu pursued a purely (coarse) metric version of Bekka-Cherix-Valette’s theorem. He proposed a sufficient condition for coarse embeddability which, in the special case of groups, turned out to have a flavour similar to amenability and a-T-menability (it does not compare with either property).

Definition 1 (Yu 2000)A uniformly discrete metric space has property A if for all , , there exists a family of subsets of such that

- There exists such that .

The factor is there to allow for sets with multiplicities.

In other words, (1) mimics F\o lner’s criterion. Sets are indexed by points in order to cope with the absence of equivariance.

**Examples**. Finite metric spaces have property A. Amenable groups have property A.

** 1.2. Trees have property A **

Let be an infinite tree. Fix a root . For , set vertices of the geodesic from to with multiplicity 1, until points have been counted. If , put multiplicity on . Then

** 1.3. Asymptotic dimension **

Let be a metric space, a cover of . Its *-multiplicity* is the maximum number of elements of containing a given ball of radius . is uniformly bounded if there is a common bound for diameters of all elements of .

Definition 2Say has asymptotic dimension if for all , there is a uniformly bounded cover of -multiplicity .

**Examples**. has asymptotic dimension .

, have infinite asymptotic dimension.

Gromov: Hyperbolic metric spaces have finite asymptotic dimension. However, it can be arbitrarily large.

Theorem 3 (Higson-Roe 2000)Finite asymptotic dimension implies Property A.

The proof is lengthy and not even included in my notes.

Theorem 4 (Yu 2000)Property A implies coarse embeddability in Hilbert space.

The construction is directly inspired from Bekka-Cherix-Valette. See below a more precise statement.

**2. Quantitative Property A **

Definition 5 (Tessera)Let be a uniformly discrete metric space. Let e a nondecreasing function. Say that satisfies Property A with gauge and exponent if there exists a sequence of families of subsets of such that

- .
- .
- is contained in .

In other words, we want a quantitative control on the diameters of the sets in Yu’s Property A.

Theorem 6From , one cooks up a class of nondecreasing functions which are shown to be compression functions for Lipschitz coarse embeddings of into .

**Proof**. Fix a base point . Embed in the direct sum of countably many copies of as follows. The -component maps point to

This is indeed in provided

In fact, it is Lipschitz which compression .

**Examples**. Spaces with subexponential growth have Property for

Doubling metric spaces have Property with and therefore coarsely embed into